Square Planar to Rectangular Distortion in Transition-Metal Compounds of Edge-Sharing Square Planar Units $M X_{4}$

N. Gupta, D.-K. Seo, and M.-H. Whangbo ${ }^{1}$
Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204
and
S. Jobic, J. Rouxel, and R. Brec ${ }^{1}$
Laboratoire de Chimie des Solides, Institut des Materiaux de Nantes, UMR CNRS No. 110, Université de Nantes, 44072 Nantes Cedex 03, France

Received July 1, 1996; in revised form September 26, 1996; accepted October 1, 1996

In transition metal compounds of edge-sharing square planar $M X_{4}$ units ($M=$ group 10 , group $11 ; X=O, S, S e$), a square planar to rectangular distortion is observed. The causes for this distortion in $M X_{2}$ ladder chains, $M_{3} X_{4}$ honeycomb layers, and 3D $M X$ lattices were examined by performing extended Hückel tight binding electronic band structure calculations. The primary cause for the distortion is the reduction of the four-electron two-orbital destabilizing interactions among the p-orbitals of \boldsymbol{X}. (C) 1997 Academic Press

A number of transition-metal oxides and chalcogenides have structures based on edge-sharing square planar units $M X_{4}(X=\mathrm{O}, \mathrm{S}, \mathrm{Se})$. These structures range from onedimensional (1D) "ladder" chains of formula $M X_{2}$ to twodimensional (2D) "honeycomb" layers of formula $M_{3} X_{4}$ to three-dimensional (3D) lattices of formula $M X$. The $M X_{2}$ ladder chains (Fig. 1a) result from sharing the edges of square planar $M X_{4}$ units and are found in chalcogenides $A_{2} M X_{2} \quad(A=$ alkali metal, $M=$ group 10 element, $X=$ chalocogen) (1) and oxides $A \mathrm{CuO}_{2}$ ($A=$ alkali metal) (2-4). For convenience of discussion, the shared $X-X$ edge of an $M X_{4}$ unit will be referred to as $X-X(\perp)$, and the unshared $X-X$ edge as $X-X(\|)$. In $M_{3} X_{4}$ honeycomb layers (Fig. 1b) of chalcogenides $A_{2} M_{3} X_{4}(5)$, every six $M X_{4}$ units form a hexagonal cylinder and every three $M X_{4}$ units share a common edge $X-X(\perp)$. The 3D $M X$ lattices (Fig. 1c) of PdO (6), PtO (6) and PtS (7) can be constructed in terms of $M X_{2}$ ladder chains as follows: first, form layers of equallyspaced $M X_{2}$ chains with the spacing of $X-X(\|)$ and with

[^0]the $X-X(\perp)$ edges perpendicular to the $a b$-plane, then stack these layers along the c-direction such that the chains of adjacent layers are perpendicular, and finally share the X atoms of adjacent layers so that the $X-X(\perp)$ edges form straight lines along the c-direction. The 3D $M X$ lattices of $\mathrm{CuO}(8)$ and $\mathrm{AgO}(9)$ differ slightly from those of $\mathrm{PdO}, \mathrm{PtO}$, and PtS in that the $M X_{4}$ planes of the $M X_{2}$ chains are not perpendicular to the $a b$-plane (tilted by 11° from the perpendicular arrangement in CuO), and the $M X_{2}$ chains of adjacent layers are not orthogonal (twisted by 8° from the orthogonal arrangement in CuO).

All the 1D, 2D, and 3D compounds of edge-sharing $M X_{4}$ units mentioned above have a common structural feature that the $M X_{4}$ units are elongated along the edge-sharing directions so that $X-X(\|)>X-X(\perp)$. In their electronic structure study of the PtS_{2}^{2-} ladder chains of $A_{2} \mathrm{PtS}_{2}$ ($A=\mathrm{K}, \mathrm{Rb}$) (1b), Silvestre and Hoffmann (10) noted that the elongation of the PtS_{4} units is largely caused by the four-electron two-orbital destabilization (11) associated with the sulfur lone pairs. In the present work, we explore this point in more detail by studying the electronic band structures of representative $M X_{2}$ ladder chain, $M_{3} X_{4}$ honeycomb layer and 3D $M X$ lattice systems using the extended Hückel tight binding (EHTB) method (12). The atomic parameters used in the present calculations are summarized in Table 1.

To describe the square planar to rectangular distortion of an $M X_{4}$ unit, we define the $X-M-X$ angle such that $X-X(\|)>X-X(\perp)$ when the angle is smaller than 90° and also employ the coordinate systems shown in Fig. 1. Table 2 summarizes the $X-M-X$ angles observed for representative $1 \mathrm{D}, 2 \mathrm{D}$, and 3 D compounds of edge-sharing square planar $M X_{4}$ units, e.g., the ladder chains of $\mathrm{K}_{2} \mathrm{PtS}_{2}$ (1b) and NaCuO_{2} (3e), the honeycomb layers of $\mathrm{Cs}_{2} \mathrm{Pt}_{3} \mathrm{~S}_{4}$

FIG. 1. Schematic perspective views of (a) an $M X_{2}$ ladder chain, (b) an $M_{3} X_{4}$ honeycomb layer, and (c) a 3D $M X$ lattice.
(5d) and the 3D lattice of PtO (6). The optimum $X-M-X$ angles of these systems were calculated using the EHTB method while keeping the $M-X$ bond lengths constant. As summarized in Table 2, the optimum $X-M-X$ angles are all calculated to be smaller than 90° in good agreement with experiment.

For the square planar to rectangular distortion, the important orbitals to consider are the ones that lead to the top of the p-block bands. Such orbitals are given by the most antibonding combinations of the p-orbitals of X and are not stabilized by any d orbital of M due to a symmetry mismatch. For an $M X_{2}$ ladder chain, the p_{x} orbital of each X atom leads to the most sigma antibonding level 1.

TABLE 1
Exponents ζ_{i} and Valence Shell Ionization Potentials $\boldsymbol{H}_{i i}$ of Slater-Type Orbitals χ_{i} Used for EHTB Calculation ${ }^{a}$

Atom	χ_{i}	$H_{i i}(\mathrm{eV})$	ζ_{i}	$c_{i}{ }^{b}$	$\zeta_{i^{\prime}}$	$c_{2}{ }^{b}$
O	2 s	-32.3	2.275			
O	2 p	-14.8	2.275			
S	3 s	-20.0	1.817			
S	3 p	-13.3	1.817			
Cu	4 s	-11.4	2.20			
Cu	4 p	-6.06	2.20			
Cu	3 d	-14.0	5.95	0.5933	2.30	0.5744
Pt	6 s	-9.08	2.554			
Pt	6 p	-5.47	2.554			
Pt	5 d	-12.6	6.013	0.6334	2.696	0.5513

${ }^{a} H_{i i}$'s are the diagonal matrix elements $\left\langle\chi_{i}\right| H^{\text {eff }}\left|\chi_{i}\right\rangle$, where $H^{\text {eff }}$ is the effective Hamiltonian. In our calculations of the off-diagonal matrix elements $H^{\text {eff }}=\left\langle\chi_{i}\right| H^{\text {eff }}\left|\chi_{j}\right\rangle$, the weighted formula was used (Ammeter et al., J. Am. Chem. Soc. 100, 3686 (1978)).
${ }^{b}$ Contraction coefficients used in the double- ζ Slater-type orbital.

This level can be stabilized by the upper p_{x} orbital of M (e.g., $6 p_{x}$ of Pt), but this is not effective. The antibonding in 1 is most effectively reduced by lengthening the $X-X(\|)$ distance, i.e., by decreasing the $X-M-X$ angle from 90°. The most sigma antibonding level resulting from the p_{z} orbital of each X atom is 2.

z

The extent of the antibonding in $\mathbf{2}$ is enhanced by decreasing the $X-M-X$ angle from 90° because it shortens the $X-X(\perp)$ distance. In the level $\mathbf{2}$, sigma antibonding is present in every isolated " $X-X(\perp)$ dimer" unit. If one views the level 1 in terms of " $X-X(\|)$ dimer" units, then the level 1 results when their sigma antibonding levels are combined in a σ antibonding manner between every adjacent dimer units.

TABLE 2
Experimental and Calculated $X-M-X$ angles for the $M X_{4}$ Units in the Ladder Chains of $\mathrm{K}_{2} \mathrm{PtS}_{2}$ and NaCuO_{4}, the Honeycomb Layers of $\mathrm{Cs}_{2} \mathrm{Pt}_{3} \mathrm{~S}_{4}$, and the 3D Lattice of PtO

Parameter		Chain		Layer	3D Lattice
		$\mathrm{K}_{2} \mathrm{PtS}_{2}$	NaCuO_{2}	$\mathrm{Cs}_{2} \mathrm{Pt}_{3} \mathrm{~S}_{4}$	PtO
$M-X-M\left({ }^{\circ}\right)$	Exptl.	80.8	33.6	$81.4{ }^{\text {b }}$	82.6
	Calc.	84	81	78	84
$M-X(\AA)^{a}$		2.358	1.840	$2.407^{\text {b }}$	2.023

[^1]Therefore, the level $\mathbf{1}$ is more antibonding than is the level $\mathbf{2}$, so that the square planar to rectangular distortion proceeds by increasing the $X-X(\|)$ distance. This trend can be seen from the projected density of state (PDOS) plots of the PtS_{2}^{2-} ladder chain calculated for the $\mathrm{S}-\mathrm{Pt}-\mathrm{S}$ angles of 80° and 100° (Fig. 2).

In an $M_{3} X_{4}$ honeycomb layer, each atom X has two p orbitals (i.e., p_{x} and p_{y} orbitals contained in the $a b$-plane of the layer) to make extensive σ antibonding interactions as in the orbital 1 for an $M X_{2}$ ladder chain. The PDOS plots of the $\mathrm{Pt}_{3} \mathrm{~S}_{4}^{2-}$ layer calculated for the $\mathrm{S}-\mathrm{Pt}-\mathrm{S}$ angles of 80° and 100° (Fig. 3) show that the reduction of the antibonding associated with these p orbitals is important for the distortion decreasing the $\mathrm{S}-\mathrm{Pt}-\mathrm{S}$ angle from 90°. In a $3 \mathrm{D} M X$ lattice, each p orbital of X can make extensive σ antibonding interactions. Nevertheless, the square planar to rectangular distortion takes place to decrease the $X-M-X$ angle from 90°. It is understandable because this distortion lowers the extensive antibonding interactions associated with two p orbitals (i.e., p_{x} and p_{y}) of each X, as illustrated by the PDOS plots of PtO calculated for the $\mathrm{O}-\mathrm{Pt}-\mathrm{O}$ angles of 80° and 100° (Fig. 4).

As already mentioned, in the 3D $M X$ lattices of CuO and AgO , the $M X_{4}$ planes of the $M X_{2}$ chains are not perpendicular to the $a b$-plane, and the $M X_{2}$ chains of adjacent layers are not orthogonal. CuO and AgO contain one more valence electron per unit cell than do $\mathrm{PdO}, \mathrm{PtO}$, and PtS , so

FIG. 2. PDOS plots of the PtS_{2}^{2-} ladder chain calculated for the $\mathrm{S}-\mathrm{Pt}-\mathrm{S}$ angles of (a) 80° and (b) 100°. The solid line represents the contribution of the sulfur p_{x} orbital, and the dotted line that of the sulfur p_{z} orbital. For simplicity, other orbital contributions are not shown. The vertical dashed line shows where the highest occupied level of the system lies.

FIG. 3. PDOS plots of the $\mathrm{Pt}_{3} \mathrm{~S}_{4}^{2-}$ honeycomb layer calculated for the $\mathrm{S}-\mathrm{Pt}-\mathrm{S}$ angles of (a) 80° and (b) 100°. The solid line represents the contribution of the sulfur p_{x} and p_{y} orbitals, and the dotted line that of the sulfur p_{z} orbital. For simplicity, other orbital contributions are not shown. The vertical dashed line shows where the highest occupied level of the system lies.
that the highest filled level of a local $M X_{4}$ unit in CuO and AgO is given by the orbital 3.

Z

The latter has σ antibonding interactions involving p_{z} orbitals of X along $X-X(\perp)$, so its occupation enhances the antibonding associated with the p_{z} orbitals along the c direction. The extent of this antibonding is reduced by decreasing the sigma overlap between adjacent p_{z} orbitals along the $X-X(\perp)$ direction. The tilting and twisting of the $M X_{2}$ chains found in CuO and AgO decrease the σ overlap, because they prevent the $X-X(\perp)$ linkages from forming a straight line along the c-direction.

In summary, EHTB calculations were carried out to probe the primary cause for square planar to rectangular distortions in compounds of edge-sharing square planar $M X_{4}$ units. In the $A_{2} M X_{2}$ and $A \mathrm{CuO}_{2}$ chain and the $A_{2} M_{3} X_{4}$ honeycomb layer systems, the observed distortion is similar for different alkali metal atoms A so that the countercations have little effect on the observed distortion. For the $M X_{2}$ ladder chain, $M_{3} X_{4}$ honeycomb layer and 3D $M X$ lattice systems, the overlap populations of the $X-X(\perp)$ and $X-X(\|)$ sides calculated in our work (not shown) are

FIG. 4. PDOS plots of the PtO calculated for the $\mathrm{O}-\mathrm{Pt}-\mathrm{O}$ angles of (a) 80° and (b) 100°. The solid line represents the contribution of the oxygen p_{x} and p_{y} orbitals, and the dotted line that of the oxygen p_{z} orbital. For simplicity, other orbital contributions are not shown. The vertical dashed line shows where the highest occupied level of the system lies.
too small (in the third decimal place) for meaningful discussion. Our work indicates that as found for the case of the $M X_{2}$ ladder chains (10), the primary cause for the distortion in $M_{3} X_{4}$ honeycomb layers and 3D $M X$ lattices is to reduce the extent of the four-electron two-orbital destabilizing interactions among the p orbitals of X.

ACKNOWLEDGMENTS

This work was supported by the Office of Basic Energy Sciences, Division of Materials Sciences, U.S. Department of Energy, under Grant

DE-FG05-86ER45259, and by the European Community under the Human Capital and Mobility Project (ERBCHRXCT940675).

REFERENCES

1. (a) W. Bronger, S. Jäger, R. Rennau, and D. Schmitz, J. Less-Common Met. 154, 261 (1989). (b) W. Bronger and O. Guenther, J. LessCommon Met. 27, 73 (1972).
2. (a) R. Berger, and L.-F. Tergenius, J. Alloys Comp. 203, 889 (1994). (b) W. Utsumi, K. Imai, M. Koike, H. Takei, T. Yagi, H. Takahashi, and N. Mori, J. Solid State Chem. 107, 507 (1993). (c) K. Imai, M. Koike, H. Sawa, and H. Takei, J. Cryst. Growth 128, 808 (1993). (d) K. Imai, M. Koike, H. Takei, H. Sawa, D. Shiomi, K. Nozawa, and M. Kinoshita, J. Phys. Soc. Jpn. 61, 1819 (1992).
3. (a) T. Mizokawa, A. Fujimori, H. Namatame, K. Akeyama, and N. Kosugi, Phys. Rev. B 49, 7193 (1994). (b) S. Nimkar, D. D. Sarma, and H. R. Krishnamurthy, Phys. Rev. B 47, 10927 (1993). (c) T. Mizokawa, H. Namatame, A. Fujimori, K. Akeyama, H. Kondoh, H. Kuroda, and N. Kosugi, Phys. Rev. Lett. 67, 1638 (1991). (d) K. Okada, A. Kotani, B. T. Thole, and C. A. Sawatzky, Solid State Commun. 77, 835 (1991). (e) J. Pickardt, W. Paulus, M. Schmalz, and R. Schöllhorn, J. Solid State Chem. 89, 308 (1990). (f) P. Steiner, V. Kinsinger, I. Sander, S. Hüfner C. Politis, R. Hoppe, and H. P. Müller, Z. Phys. B 67, 497 (1987). (g) K. Hestermann, and R. Hoppe, Z. Anorg. Allg. Chem. 367, 261 (1969).
4. (a) N. Brese, M. O'Keeffe, R. B. von Dreele, and V. G. Young, Jr., J. Solid State Chem. 83, 1 (1989). (b) K. Hestermann and R. Hoppe, Z. Anorg. Allg. Chem. 367, 249 (1969).
5. (a) S. H. Elder, S. Jobic, R. Brec, M. Gelabert, and F. J. DiSalvo, J. Alloy Comp. 235, 135 (1996). (b) W. Bronger, R. Rennau, and Schmitz, Z. Anorg. Allg. Chem. 597, 27 (1991). (c) J. Huster and W. Bronger, J. Solid State Chem. 11, 254 (1974). (d) O. Günther and W. Bronger, J. Less-Common Met. 31, 255 (1973).
6. W. J. Moore, Jr. and L. Pauling, J. Am. Chem. Soc. 63, 1392 (1941).
7. A. Kjekshus, Acta Chem. Scand. 20, 577 (1966).
8. S. Åsbrink and L.-J. Norrby, Acta Crystallogr B 26, 8 (1970).
9. A. J. Salkind and W. C. Zeek, J. Electrochem. Soc. 106, 366 (1959).
10. J. Silvestre and R. Hoffmann, Inorg. Chem. 24, 4108 (1985).
11. T. A. Albright, J. K. Burdett, and M. H. Whangbo, "Orbital Interactions in Chemistry." Wiley, New York, 1985.
12. M.-H. Whangbo, and R. Hoffmann, J. Am. Chem. Soc. 100, 6093 (1978).

[^0]: ${ }^{1}$ To whom correspondence should be addressed.

[^1]: ${ }^{a}$ The $M-X$ bond lengths of the $M X_{4}$ units used for calculations.
 ${ }^{b} \mathrm{The} \mathrm{Pt}_{3} \mathrm{~S}_{4}^{2-}$ honeycomb layer consists of two slightly different PtS_{4} rectangles, and hence there are two different $\mathrm{S}-\mathrm{Pt}-\mathrm{S}$ angles (82.7° and 80.1°) and two different $\mathrm{Pt}-\mathrm{S}$ bond lengths (2.428 and $2.387 \AA$). The values listed are the average values, and all PtS_{4} units were assumed to be identical for calculations.

